Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed.
نویسندگان
چکیده
When reciprocal crosses are made between different pea genotypes, there is a strong maternal influence on mature seed size of the reciprocal hybrids, i.e. their dry weights are similar to that of seeds obtained from their maternal parents. Reciprocal crosses between pea varieties having very different mature seed sizes were used to investigate how the maternal genotype controls seed development and mature seed size. The differences in dry seed weight between genotypes and reciprocal hybrids reflected differences in both cotyledon cell number and mean cell volume, and the maternal control on the establishment of these two traits was investigated. Using flow cytometry, data relative to endoreduplication kinetics in cotyledons during the transition between the cell division phase and maturation were obtained. The appearance of nuclei having an 8C DNA content indicates the initiation of the endoreduplication phenomenon and thus the end of the cell division phase. It was shown that the duration of the cell division phase was the same in the reciprocal hybrids, its value being intermediate between those recorded for their maternal parents. This result indicates that the timing of development of the embryo is not under maternal control, but depends on its own genotype. Consequently, maternal genotype must influence the mitotic rate during the cell division phase to achieve differences in cell number found in the cotyledons of mature F1-reciprocal hybrids. The final level of endoreduplication in cotyledons of mature seeds was also investigated. This study showed that there is a close relationship (r2 = 0.919) between the endoreduplication level in mature cotyledons and seed dry weight or mean volume of cotyledon cells, suggesting that both maternal and non-maternal factors could control the number of endoreduplicating cycles in the cotyledons and, hypothetically, the cotyledon cell size.
منابع مشابه
Maternal Effects on Seed and Seedling Phenotypes in Reciprocal F1 Hybrids of the Common Bean (Phaseolus vulgaris L.)
Maternal control of seed size in the common bean provides an opportunity to study genotype-independent seed weight effects on early seedling growth and development. We set out to test the hypothesis that the early heterotrophic growth of bean seedlings is determined by both the relative amount of cotyledon storage reserves and the genotype of the seedling, provided the hybrid genotype could be ...
متن کاملAnalysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains
Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associ...
متن کاملThe Natural Variation of Seed Weight Is Mainly Controlled by Maternal Genotype in Rapeseed (Brassica napus L.)
Seed weight is a very important and complex trait in rapeseed (Brassica napus L.). The seed weight of rapeseed shows great variation in its natural germplasm resources; however, the morphological, cytological and genetic causes of this variation have remained unclear. In the present study, nine highly pure inbred rapeseed lines with large seed weight variation and different genetic backgrounds ...
متن کاملTranscriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size
Litchi chinensis is a subtropical fruit crop, popular for its nutritional value and taste. Fruits with small seed size and thick aril are desirable in litchi. To gain molecular insight into gene expression that leads to the reduction in the size of seed in Litchi chinensis, transcriptomes of two genetically closely related genotypes, with contrasting seed size were compared in developing ovules...
متن کاملDASH transcription factor impacts Medicago truncatula seed size by its action on embryo morphogenesis and auxin homeostasis
The endosperm plays a pivotal role in the integration between component tissues of molecular signals controlling seed development. It has been shown to participate in the regulation of embryo morphogenesis and ultimately seed size determination. However, the molecular mechanisms that modulate seed size are still poorly understood especially in legumes. DASH (DOF Acting in Seed embryogenesis and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 51 343 شماره
صفحات -
تاریخ انتشار 2000